Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

[N, N^{\prime}-Bis(5-bromosalicylidene)-ophenylenediaminato]copper(II)

Ayhan Elmali, ${ }^{\text {a }}$ * Yalçin Elerman ${ }^{\text {a }}$ and Ingrid Svoboda ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics Engineering, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, and ${ }^{\mathbf{b}}$ Strukturforschung, Fachbereich
Materialwissenschaft, Technische Universität Darmstadt, Petersenstrasse 23,
D-64287 Darmstadt, Germany
Correspondence e-mail: elmali@science.ankara.edu.tr

Received 5 November 1999
Accepted 24 December 1999
In the title compound, $\left\{4,4^{\prime}\right.$-dibromo- $2,2^{\prime}$-[o-phenylenebis-(nitrilomethylidene)]diphenolato- $\left.O, N, N^{\prime}, O^{\prime}\right\} \operatorname{copper}(\mathrm{II}),[\mathrm{Cu}-$ $\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$, the $\mathrm{Cu}^{\text {II }}$ ion shows a slightly distorted square-planar geometry with the $\mathrm{N}_{2} \mathrm{O}_{2}$ atoms of the Schiff base imine-phenol tetradentate ligand.

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variation (Garnovskii et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and nickel(II) complexes play a major role in both synthetic and structural research. The geometry of the coordination sphere is usually planar in the case of Ni , but for Cu , a tetrahedral distortion is often observed (Garnovskii et al., 1993). We have reported previously the crystal structures of several dimeric and monomeric Schiff base complexes of $\mathrm{Cu}^{\mathrm{II}}$ (Elmali et al., 1997; Elerman \& Geselle, 1997; Elerman, Elmali \& Özbey, 1998; Elerman, Elmali, Kabak \& Svoboda, 1998). We report here the results of the reaction of copper(II) with the tetradentate ligand N, N^{\prime}-bis(5-bromosalicylidene)-o-phenylenediamine, forming the title compound, (I).

(I)

Tetracoordinate Schiff base metal complexes may form trans or cis planar or tetrahedral structures. A strictly planar or slightly distorted coordination is characteristic for transition metal complexes of copper(II) with a $\mathrm{CuN}_{2} \mathrm{O}_{2}$ coordination sphere (Garnovskii et al., 1993). In (I), the Cu atom is coordinated by two imine N atoms and two phenol O atoms from the imine-phenol ligand, in a slightly distorted square-planar
coordination. The $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2, \mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{O} 1, \mathrm{O} 1-\mathrm{Cu} 1-$ O 2 and $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$ bond angles are 84.6 (2), 94.1 (2), 87.4 (2) and $93.9(2)^{\circ}$, respectively. The $\mathrm{Cu}-\mathrm{N}$ distances [1.936 (4) and 1.946 (4) \AA] are longer than the $\mathrm{Cu}-\mathrm{O}$ distances $[1.887$ (4) and 1.882 (3) \AA]. These distances agree with values in other square-planar-coordinated copper(II) complexes (Akhtar \& Drew, 1982; Labisbal et al., 1994). The planar molecules are stacked in columns along the b axis, with $\mathrm{Cu} \cdots \mathrm{Cu}$ separations of 3.399 (1) \AA. However, this $\mathrm{Cu} \cdots \mathrm{Cu}$ dimeric interaction is considerably shorter than the value of 3.613 (3) \AA observed in N, N^{\prime}-propylenebis[(2-hydroxy-1naphthyl)methaniminato]copper(II) (Akhtar \& Drew, 1982).

No unusual bond distances are observed in the salen derivative of (I); average distances and angles include $\mathrm{C}-\mathrm{C}=$ 1.391 (8) $\AA, \mathrm{C}-\mathrm{O}=1.294$ (6) $\AA, \mathrm{C}-\mathrm{N}=1.420$ (6) and $\mathrm{C}=\mathrm{N}=$ 1.292 (6) \AA, and phenyl $\mathrm{C}-\mathrm{C}-\mathrm{C}=120.3$ (3) ${ }^{\circ}$. These values are within the expected ranges for coordinated salen derivatives (Riley et al., 1986; Zamian et al., 1995; Schmidt et al., 1996).

Figure 1
The molecular structure and atom-labelling scheme of (I). Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as spheres of arbitrary radii (ORTEP-3 for Windows; Farrugia, 1997).

Experimental

Suitable crystals were obtained directly from the synthesis of compound (I). The preparation of N, N^{\prime}-bis(5-bromosalicylidene)-1,2diaminobenzene followed the process described recently by Elerman, Elmali, Kabak \& Svoboda (1998). Two solutions, N, N^{\prime}-bis(5-bromosalicylidene) 1,2-diaminobenzene $(0.5 \mathrm{mmol})$ in tetrahydrofuran $(50 \mathrm{ml})$ and $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in methanol $(30 \mathrm{ml})$, were prepared and heated to boiling point. The mixture of the two solutions was then refluxed for 4 h . Crystals of (I) were obtained after 2 d .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=535.70$
Monoclinic, $P 2_{1} / n$
$a=12.1140(10) \AA$
$b=8.095(2) \AA$
$c=18.538(6) \AA$
$\beta=106.300(10)^{\circ}$
$V=1744.8(7) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=2.039 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=2.34-10.25^{\circ} \\
& \mu=5.851 \mathrm{~mm}^{-1} \\
& T=299(2) \mathrm{K} \\
& \text { Prism, brown } \\
& 0.30 \times 0.13 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical
via ψ scans (North et al., 1968)
$T_{\text {min }}=0.421, T_{\text {max }}=0.752$
6199 measured reflections
3399 independent reflections 1973 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040\)
\(w R\left(F^{2}\right)=0.115\)
\(S=1.073\)
3399 reflections
245 parameters
H atoms constrained
```

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0621 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.81 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.08$ e \AA^{-3}
Extinction correction: SHELXL93
(Sheldrick, 1993)
Extinction coefficient: 0.0001 (3)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{O} 1$	$1.291(6)$	$\mathrm{C} 17-\mathrm{Br} 2$	$1.899(5)$
$\mathrm{C} 4-\mathrm{Br} 1$	$1.898(5)$	$\mathrm{C} 20-\mathrm{O} 2$	$1.296(6)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.298(6)$	$\mathrm{N} 1-\mathrm{Cu} 1$	$1.936(4)$
$\mathrm{C} 8-\mathrm{N} 1$	$1.423(6)$	$\mathrm{N} 2-\mathrm{Cu} 1$	$1.946(4)$
$\mathrm{C} 13-\mathrm{N} 2$	$1.416(6)$	$\mathrm{O} 1-\mathrm{Cu} 1$	$1.887(4)$
$\mathrm{C} 14-\mathrm{N} 2$	$1.286(6)$	$\mathrm{O} 2-\mathrm{Cu} 1$	$1.882(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$			
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$119.4(5)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$122.0(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 1$	$124.2(5)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Cu} 1$	$125.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	$119.4(4)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Cu} 1$	$112.6(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$120.0(4)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{C} 13$	$122.6(4)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1$	$125.0(4)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{Cu} 1$	$125.0(3)$
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{N} 1$	$125.4(5)$	$\mathrm{C} 13-\mathrm{N} 2-\mathrm{Cu} 1$	$112.4(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 2$	$115.1(4)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	$127.9(3)$
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{N} 2$	$125.5(5)$	$\mathrm{C} 20-\mathrm{O} 2-\mathrm{Cu} 1$	$127.9(3)$
$\mathrm{N} 2-\mathrm{C} 14-\mathrm{C} 15$	$115.4(4)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$87.4(2)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{Br} 2$	$125.9(5)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$178.4(2)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{Br} 2$	$120.9(4)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$94.1(2)$
$\mathrm{O} 2-\mathrm{C} 20-\mathrm{C} 19$	$119.1(4)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$93.9(2)$
$\mathrm{O} 2-\mathrm{C} 20-\mathrm{C} 15$	$118.8(5)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$178.5(2)$
	$124.3(4)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$84.6(2)$

Data collection: CAD-4 Diffractometer Control Software (EnrafNonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe \& Cie, 1991); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1068). Services for accessing these data are described at the back of the journal.

References

Akhtar, F. \& Drew, M. G. B. (1982). Acta Cryst. B38, 1149-1154.
Elerman, Y., Elmali, A., Kabak, M. \& Svoboda, I. (1998). Acta Cryst. C54, 1701-1703.
Elerman, Y., Elmali, A. \& Özbey, S. (1998). Acta Cryst. C54, 1072-1074.
Elerman, Y. \& Geselle, M. (1997). Acta Cryst. C53, 549-551.
Elmali, A., Elerman, Y., Svoboda, I., Fuess, H., Griesar, K. \& Haase, W. (1997). Z. Naturforsch. Teil B, 52, 157-161.

Enraf-Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Garnovskii, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Labisbal, E., Romero, J., Garcia-Vasquez, J. A., Sousa, A., Castellano, E. E. \& Zukerman-Schpector, J. (1994). Acta Cryst. C50, 1043-1044.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Riley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. \& Raymond, K. N. (1986). J. Chem. Soc. Dalton Trans. pp. 3865-3870.

Schmidt, H., Bashirpoor, M. \& Rehder, D. (1996). J. Chem. Soc. Dalton Trans. pp. 3865-3870.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Stoe \& Cie (1991). REDU4. Version 7.08. Stoe \& Cie, Darmstadt, Germany.
Zamian, J. R., Dockal, E. R., Castellano, G. \& Oliva, G. (1995). Polyhedron, 14, 2411-2418.

